👤

(ii) Using a scale of 4 cm to represent 1 unit, draw a horizontal x-axis for -1.5≤x≤2. Using a scale of 2 cm to represent 5 units, draw a vertical y-axis for -10 ≤ y ≤ 10. Draw the graph of y = 2x³-3x² +5 for -1.5 ≤ x ≤2.​

Répondre :

Réponse:

To draw the graph of \( y = 2x^3 - 3x^2 + 5 \) for \( -1.5 \leq x \leq 2 \), follow these steps:

1. **Set up the axes:**

- For the x-axis: Use a scale of 4 cm to represent 1 unit. Mark points for \( x = -1.5 \), 0, and 2 on the x-axis.

- For the y-axis: Use a scale of 2 cm to represent 5 units. Mark points for \( y = -10 \), 0, and 10 on the y-axis.

2. **Plot the points:**

- Substitute \( x = -1.5 \), 0, and 2 into the equation \( y = 2x^3 - 3x^2 + 5 \) to find the corresponding y-values.

- Plot the points (-1.5, y), (0, y), and (2, y) on the graph.

3. **Draw the curve:**

- Connect the points smoothly to draw the curve of the function.

4. **Label the axes:**

- Label the x-axis with "x" and the y-axis with "y".

- Label any other points or features as necessary.

Remember to use a ruler to ensure accuracy in drawing the axes and the curve.

Since I can't draw here, you'll need to follow these instructions on graph paper to create the graph accurately. If you have any specific questions or need further clarification on any step, feel free to ask!

Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !


En Studier: D'autres questions