Répondre :
Pour répondre à ces questions, il faut d'abord connaître la durée totale de toutes les chansons enregistrées dans le lecteur MP3 de Margot.
Durée totale des chansons enregistrées :
4'24" + 5'37" + 3'12" + 5'23" + 2'18" + 2'37" + 3'39" + 4'23" = 31'13"
Question 1 :
Pour que la durée de la chanson soit supérieure à cinq minutes, il faut additionner les durées des chansons qui sont supérieures ou égales à cinq minutes :
5'37" + 5'23" + 4'23" = 15'23"
La probabilité que la durée de la chanson soit supérieure à cinq minutes est donc :
15'23" / 31'13" ≈ 0,4955 (49,55%)
Question 2 :
Il faut maintenant calculer toutes les combinaisons possibles de deux chansons dont la durée totale est inférieure à six minutes :
2'18" + 2'37" = 4'55"
2'18" + 3'12" = 5'30"
2'18" + 3'39" = 5'57"
2'37" + 3'12" = 5'49"
2'37" + 3'39" = 6'16" (ne convient pas car supérieur à six minutes)
3'12" + 3'39" = 6'51" (ne convient pas car supérieur à six minutes)
Il y a donc 4 combinaisons possibles de deux chansons dont la durée totale est inférieure à six minutes.
La probabilité que la durée totale des deux chansons soit inférieure à six minutes est donc : 4 / (8*7/2) = 4 / 28 = 1 / 7 ≈ 0,1429 (14,29%)
Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !