Répondre :
Explications étape par étape:
Désigne par x le nombre de départ
Programme de Léo donne: 6 x + 5
le programme de Julie donne : (x + 8)*x-x² = x² + 8 x - x² = 8 x
Pour trouver la même résultat pour le même nombre choisi au départ on a donc 6 x + 5 = 8x donc 6 x - 8 x = 5 donc 2 x = 5
donc x =5 / 2
Donc lorsque Julie et Léo choisissent 5/2 Ils trouvent la même résultat par les 2 programmes
Pour trouver le nombre choisi au départ par Léo et Julie, nous devons résoudre l'équation suivante :
(x + 8) * x - x^2 = (x + 8) * x - x * x
Simplifions cette équation :
x^2 + 8x - x^2 = x^2 + 8x - x^2
8x = 8x
Il semble que l'équation soit vérifiée pour tous les nombres réels x. Donc, il n'y a pas de réponse unique à cette question. Léo et Julie peuvent choisir n'importe quel nombre au départ et obtenir le même résultat à la fin de leur programme de calcul.
(x + 8) * x - x^2 = (x + 8) * x - x * x
Simplifions cette équation :
x^2 + 8x - x^2 = x^2 + 8x - x^2
8x = 8x
Il semble que l'équation soit vérifiée pour tous les nombres réels x. Donc, il n'y a pas de réponse unique à cette question. Léo et Julie peuvent choisir n'importe quel nombre au départ et obtenir le même résultat à la fin de leur programme de calcul.
Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !