Répondre :
Réponse :Bonjour, tout d'abord il faut séparer le calcul en deux:
1)(2-2x)(3-x)
2)(3-x)²
Pour résoudre le petit 1, il faut appliquer la double distributivité.
On réalise donc 2*3 +2*(-x)+(-2x)*3+(-2x)*(-x)
On trouve de ce fait A=6+(-2x)+(-6x)+2x²
Tu additionnes et soustrait les calculs à faire : 6-2x-6x+2x²
Ce qui te donne 2x² - 8x +6
Ensuite, on passe à la deuxième étape, le calcul de (3-x)².
Il s'agit ici d'une identité remarquable, ici de la deuxième identité remarquable, on applique donc la formule:
(a - b)² = a² - 2ab + b²
Tu vas donc effectuer : (3-x)²= 3²-2*3*x+x²
Tu obtiens : (3-x)²=9-6x+x²
Tu vas rejoindre ton calcul qi à la base était A = (2-2x)(3-x)-(3-x) ²
et tu remplaces par ce que tu as calculé:
A=(2x² - 8x +6)-(9-6x+x²)
Il reste un dernière chose à effectuer car lorsqu'il y a un moins devant un parenthèse, tous les signes de celle ci sont inversés. Ce qui donne:
(2x² - 8x +6)+(-9-(-6x)+(-x²))
Il ne reste plus qu'a rejoindre les deux parenthèses ce qui fait:
A=(2x² - 8x +6)+(-9+6x-x²)
A=(2x² - 8x +6)+(-x²+6x-9)
A=2x² - 8x +6+-x²+6x-9
A=x²-2x-3
Enfin, quand x=-6, tu remplaces tous les x par -6
A=(-6)²-2*(-6)-3
A= 45
En espérant t'avoir aidé, n'hésites pas si tu as une question !
Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !