Répondre :
bonjour
E = ( 3 x + 8 )² - 64
a) E = 9 x² + 48 x + 64 - 64
= 9 x² + 48 x
b ) différence de 2 carrés
= ( 3 x + 8 - 8 ) ( 3 x + 8 + 8 )
= 3 x ( 3 x + 16 )
( 3 x + 8 )² - 64 = 0
3 x ( 3 x + 16 ) = 0
x = 0 ou x = - 16/3
Bon WE
Bonjour,
Réponse :
a)
[tex]\sf E =(3x + 8)^2 - 64[/tex]
On connait l'identité remarquable [tex]\sf (a+b)^2 = a^2 + 2ab+b^2[/tex], donc :
[tex]\sf E = (3x)^2 + 2 \times 3x\times 8 + 8^2 - 64[/tex]
[tex]\sf E = 9x^2 + 48x + 64- 64[/tex]
[tex]\boxed{\sf E = 9x^2 + 48x}[/tex]
b)
[tex]\sf E = 3x \times 3x + 3x \times 16[/tex]
On sait que [tex]\sf ka + kb = k(a+b)[/tex], donc :
[tex]\boxed{\sf E = 3x(3x + 16)}[/tex]
c)
[tex]\sf (3x+8)^2 - 64 = 0[/tex]
On sait que [tex]\sf E = 3x(3x + 16)[/tex], donc on a :
[tex]\sf 3x(3x + 16) = 0[/tex]
C'est une équation produit nul.
Un produit de facteurs est nul si et seulement si au moins l'un de ses facteurs est nul :
[tex]\sf 3x= 0[/tex] [tex]\sf 3x + 16 = 0[/tex]
[tex]\boxed{\sf x = 0}[/tex] [tex]\boxed{\sf x =- \dfrac{16}{3}}[/tex]
Bonne journée !
Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !