Répondre :
Réponse:
Bonjour !
1. L'aire de l'enclos est toujours la même, quelle que soit la longueur AB. Pour le comprendre, nous allons calculer l'aire pour AB=2m et pour AB=3m.
Pour AB=2m, l'aire de l'enclos est égale à la longueur du grillage (25m) multipliée par la hauteur du rectangle (AB). Or, la hauteur est égale à la longueur du grillage (25m) moins la longueur du côté opposé (2m). Donc, l'aire est égale à :
Aire = 25m × (25m - 2m) = 25m × 23m = 575m²
Maintenant, pour AB=3m, l'aire de l'enclos est également égale à :
Aire = 25m × (25m - 3m) = 25m × 22m = 550m²
Comme nous voyons, l'aire est la même pour les deux valeurs de AB. Cela signifie que l'aire de l'enclos est indépendante de la longueur AB.
2. Pour déterminer l'expression de la fonction f, nous allons utiliser les résultats précédents. Nous notons x la longueur AB et f(x) l'aire de l'enclos. Alors, nous pouvons écrire :
f(x) = 25m × (25m - x)
3. Pour vérifier que la formule est correcte, nous allons calculer les images de 2 et 3.
Pour x=2m, nous obtenons :
f(2m) = 25m × (25m - 2m) = 25m × 23m = 575m²
Et pour x=3m, nous obtenons :
f(3m) = 25m × (25m - 3m) = 25m × 22m = 550m²
Les résultats correspondent aux valeurs précédemment calculées, ce qui signifie que la formule est correcte !
Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !