Répondre :
cc
1. Donner le sens de variation de la fonction carrée sur R.
en forme de U
donc décroissante puis croissante
2. Donner la définition d'une fonction impaire.
voir cours
3. Soient A(A; YA) et B(zB ; yg) deux points d'un repère orthogonal du plan. Donner la formule permettant de trouver les coordonnées du vecteur AB.
idem voir cours - vect AB(xb-xa;yb-ya)
4. Enoncer les trois identités remarquables.
(a+b)²=a²+2ab+b²
(a-b)²=a²-2ab+b²
et (a+b) (a-b)=a²-b²
Réponse :
Explications étape par étape :
Bonjour,
1) f(x) =x². (c'est une parabole avec a>0 et une fonction paire) → existence d'un axe de symétrie)
Décroissante sur ]-∞;0] et croissante sur [0;+∞[
Quand x→-∞ ou + ∞ f(x) → + ∞
2) Une fonction f est impaire ssi ∀x, x∈Df (domaine de définition def) :
f(-x) =-f(x) (Elle admet un centre de symétrie)
3) AB(xB-xA; yB-yA)
4) (a+b)² = a²+2ab+ b²
(a-b)² = a²-2ab +b²
(a²-b²) = (a-b)(a+b).
Je vous conseille d'apprendre et de retenir absolument ces définitions. très utilisées en maths.
Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !