Répondre :
D'accord, je vais résoudre ces divisions pour vous :
1. \(\frac{12a^4b^2 - 6a^3b^3 + 9a^2b^3}{3a^2b}\)
= \(\frac{12a^4b^2}{3a^2b} - \frac{6a^3b^3}{3a^2b} + \frac{9a^2b^3}{3a^2b}\)
= \(4ab - 2ab^2 + 3b^2\)
2. \(\frac{36xy^4 - 20xy + 32x^2y^2}{4xy}\)
= \(\frac{36xy^4}{4xy} - \frac{20xy}{4xy} + \frac{32x^2y^2}{4xy}\)
= \(9y^3 - 5 + 8xy\)
3. \(\frac{45x^2y^2 + 50x^3y^4 - 65x^4y^2}{5x^2y^2}\)
= \(\frac{45x^2y^2}{5x^2y^2} + \frac{50x^3y^4}{5x^2y^2} - \frac{65x^4y^2}{5x^2y^2}\)
= \(9 + 10y^2 - 13x^2\)
4. \(\frac{-9a^4b^3 + 27a^3b^4 - 81a^2b^2}{-9a^2b^2}\)
= \(\frac{-9a^4b^3}{-9a^2b^2} + \frac{27a^3b^4}{-9a^2b^2} - \frac{81a^2b^2}{-9a^2b^2}\)
= \(a^2b - 3ab^2 + 9\)
5. \(\frac{8x(x-3)-5x(2x+3)}{-2x}\)
= \(\frac{8x^2 - 24x - 10x^2 - 15x}{-2x}\)
= \(\frac{-2x^2 - 39x}{-2x}\)
= \(x + \frac{39}{2}\)
6. \(\frac{x^2y/4 - xy/16 + 3x/8}{x/4}\)
= \(\frac{x^2y}{4x} - \frac{xy}{16x} + \frac{3x}{8x}\)
= \(\frac{xy}{4} - \frac{y}{16} + \frac{3}{8}\)
J'espère que cela vous aide !
1. \(\frac{12a^4b^2 - 6a^3b^3 + 9a^2b^3}{3a^2b}\)
= \(\frac{12a^4b^2}{3a^2b} - \frac{6a^3b^3}{3a^2b} + \frac{9a^2b^3}{3a^2b}\)
= \(4ab - 2ab^2 + 3b^2\)
2. \(\frac{36xy^4 - 20xy + 32x^2y^2}{4xy}\)
= \(\frac{36xy^4}{4xy} - \frac{20xy}{4xy} + \frac{32x^2y^2}{4xy}\)
= \(9y^3 - 5 + 8xy\)
3. \(\frac{45x^2y^2 + 50x^3y^4 - 65x^4y^2}{5x^2y^2}\)
= \(\frac{45x^2y^2}{5x^2y^2} + \frac{50x^3y^4}{5x^2y^2} - \frac{65x^4y^2}{5x^2y^2}\)
= \(9 + 10y^2 - 13x^2\)
4. \(\frac{-9a^4b^3 + 27a^3b^4 - 81a^2b^2}{-9a^2b^2}\)
= \(\frac{-9a^4b^3}{-9a^2b^2} + \frac{27a^3b^4}{-9a^2b^2} - \frac{81a^2b^2}{-9a^2b^2}\)
= \(a^2b - 3ab^2 + 9\)
5. \(\frac{8x(x-3)-5x(2x+3)}{-2x}\)
= \(\frac{8x^2 - 24x - 10x^2 - 15x}{-2x}\)
= \(\frac{-2x^2 - 39x}{-2x}\)
= \(x + \frac{39}{2}\)
6. \(\frac{x^2y/4 - xy/16 + 3x/8}{x/4}\)
= \(\frac{x^2y}{4x} - \frac{xy}{16x} + \frac{3x}{8x}\)
= \(\frac{xy}{4} - \frac{y}{16} + \frac{3}{8}\)
J'espère que cela vous aide !
Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !