👤

ons, proportions et pource 3 Dans chaque cas ci-dessous, la Tu l'exprimeras sous forme d'une fraction, puis proportion du temps total, consacrée à la pause . d'un pourcentage. a. Une pause de 12 minutes, au milieu d'une balade d'une heure au total. b. Une mi-temps de 45 min, puis une pause de 10 min, puis une mi-temps de 45 min. c. Un arrêt d'1 quart d'heure, après avoir roulé 2 h. d. Je fais mes maths pendant 20 minutes, je me repose 45 minutes, puis je fais mon français pendant 10 minutes. ​

Répondre :

a. Pour la pause de 12 minutes au milieu d'une balade d'une heure :
- Fraction : \( \frac{12}{60} = \frac{1}{5} \)
- Proportion : \( \frac{1}{5} \) du temps total
- Pourcentage : \( \frac{1}{5} \times 100\% = 20\% \)

b. Pour la première mi-temps de 45 minutes, puis une pause de 10 minutes, puis une deuxième mi-temps de 45 minutes :
- Fraction pour la première mi-temps : \( \frac{45}{45 + 10 + 45} = \frac{45}{100} = \frac{9}{20} \)
- Fraction pour la pause : \( \frac{10}{100} = \frac{1}{10} \)
- Fraction pour la deuxième mi-temps : \( \frac{45}{100} = \frac{9}{20} \)
- Proportion pour la pause : \( \frac{1}{10} \) du temps total
- Pourcentage pour la pause : \( \frac{1}{10} \times 100\% = 10\% \)

c. Pour l'arrêt d'un quart d'heure après avoir roulé 2 heures :
- Fraction : \( \frac{15}{120} = \frac{1}{8} \)
- Proportion : \( \frac{1}{8} \) du temps total
- Pourcentage : \( \frac{1}{8} \times 100\% = 12.5\% \)

d. Pour faire des maths pendant 20 minutes, se reposer pendant 45 minutes, puis faire du français pendant 10 minutes :
- Fraction pour les maths : \( \frac{20}{20 + 45 + 10} = \frac{20}{75} = \frac{4}{15} \)
- Fraction pour la pause : \( \frac{45}{75} = \frac{3}{5} \)
- Fraction pour le français : \( \frac{10}{75} = \frac{2}{15} \)
- Proportion pour la pause : \( \frac{3}{5} \) du temps total
- Pourcentage pour la pause : \( \frac{3}{5} \times 100\% = 60\% \)