👤

thoriso can either walk to school at 5km/h or ride her bicycle at 15km/h if she rides her bicycle it takes her 10 minutes to get home​

Répondre :

To solve this problem, we can use the formula: distance = speed × time.

Let's denote:
- \( t_w \): time taken to walk to school.
- \( t_b \): time taken to ride the bicycle to school.

We know that the distance to school is the same whether Thoriso walks or rides her bicycle.

So, if Thoriso walks to school at 5 km/h, the time it takes her to get to school is:

\[ t_w = \frac{{\text{distance}}}{{\text{speed}}} = \frac{{\text{distance}}}{{5 \, \text{km/h}}} \]

If Thoriso rides her bicycle at 15 km/h, the time it takes her to get to school is:

\[ t_b = \frac{{\text{distance}}}{{15 \, \text{km/h}}} \]

Given that it takes her 10 minutes to get home on her bicycle, we can express this as:

\[ t_b - \frac{{10 \, \text{minutes}}}{{60 \, \text{minutes/hour}}} = \frac{{\text{distance}}}{{15 \, \text{km/h}}} - \frac{1}{6} \]

We know that the distance to school is the same in both cases, so \( t_w = t_b - \frac{1}{6} \).

Now, we can equate \( t_w \) and \( t_b \):

\[ \frac{{\text{distance}}}{{5 \, \text{km/h}}} = \frac{{\text{distance}}}{{15 \, \text{km/h}}} - \frac{1}{6} \]

We can solve this equation to find the distance.

\[ \frac{1}{5} = \frac{1}{15} - \frac{1}{6} \]

\[ \frac{1}{5} = \frac{1}{15} - \frac{5}{30} \]

\[ \frac{1}{5} = \frac{1}{30} \]

\[ \text{The distance is } 6 \text{ km} \]

Now that we know the distance, we can calculate the time it takes Thoriso to walk to school:

\[ t_w = \frac{6 \, \text{km}}{5 \, \text{km/h}} = 1.2 \, \text{hours} = 1 \, \text{hour} \, 12 \, \text{minutes} \]

So, Thoriso takes 1 hour and 12 minutes to walk to school.
Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !


En Studier: D'autres questions