Répondre :
1. For the equation mx² + (2m-3)x + (m-2) = 0:
(a) If it has two equal real roots, the discriminant should be 0, so (2m-3)² - 4m(m-2) = 0. Solve for m.
(b) For two distinct real roots, the discriminant should be greater than 0, so (2m-3)² - 4m(m-2) > 0. Find the range for m.
(c) If it has no real root, the discriminant should be negative, so (2m-3)² - 4m(m-2) < 0. Determine the range for m.
2. For the equation 2x² - 7x + m = 0 to have real roots, the discriminant (b² - 4ac) should be greater than or equal to 0. Find the maximum integer value of m.
3. For the equation kx² + (4k + 3)x + 4k - 2 = 0 to have two distinct real roots, the discriminant should be greater than 0. Solve for the range of values of k.
4. For the equation 2kx² - 3x + 5 = 0 to have no real root, the discriminant should be negative. Determine the range of values for k.
5. Given (3a + 4)x² - 4ax + 4 as a perfect square expression, the discriminant should be 0. Solve for the value(s) of a.
6. To prove that a²x² + 2ax + 2 = 0 has no real solutions when a > 0, you can use the discriminant and show that it's negative.
Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !