👤

Two real numbers, the difference between them is 5 and the sum of their squares is 73 Find the two numbers. ​

Répondre :

Réponse:

Let's denote the two numbers as x and y. We know that the difference between them is 5, so we have the equation:

x - y = 5 (1)

We also know that the sum of their squares is 73, so we have:

x^2 + y^2 = 73 (2)

From equation (1), we can express x as y + 5 and substitute it into equation (2):

(y + 5)^2 + y^2 = 73

Expanding the left side:

y^2 + 10y + 25 + y^2 = 73

Combining like terms:

2y^2 + 10y + 25 = 73

Subtracting 73 from both sides:

2y^2 + 10y - 48 = 0

Dividing by 2 to simplify:

y^2 + 5y - 24 = 0

Now, we can factor the quadratic equation:

(y + 8)(y - 3) = 0

Setting each factor to zero gives us the possible values for y:

y + 8 = 0 -> y = -8

y - 3 = 0 -> y = 3

Since the difference between the two numbers is 5, y must be 3. Therefore, the two numbers are 3 and 8.

Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !


En Studier: D'autres questions