👤

Démontrer que le bénéfice réalisé pour la vente de x tonnes de lingots égal à B(x)= -100x2+600x-500 peut être défini par B(x)= 100(x-1)(x-5). Pour quelles valeurs de x le bénéfice est-il nul ?

Répondre :

B(x) = -  100 ( x - 1 ) ( x - 5 )

B (x) =  - 100 ( x² - 5 x - x + 5 )

B (x) =  - 100 x² + 500 x +  100 x-  500 = - 100 x² +  600 x -  500

- 100  ² + 600 x - 500 = 0

Δ = 600² - 4 ( - 100 * - 500 ) = 360 000 - 200 000 = 160 000 =  400²

x 1 = ( - 600 - 400 ) / - 200 = - 1000 / - 200 =  5

x 2 =  ( - 600 + 400 ) / - 200 = - 200 / - 200 = 1

Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !


En Studier: D'autres questions