Répondre :
Pour calculer la circonférence du parterre circulaire, nous devons d'abord trouver le périmètre du cercle formé par les narcisses plantés. Les narcisses sont espacés de 22 cm.
La formule pour calculer la circonférence d'un cercle est : ( C = 2\pi r ), où ( r ) est le rayon du cercle.
Le nombre total de narcisses plantés est de 150 et ils sont espacés de 22 cm. Cela signifie que la circonférence du cercle formé par les narcisses est de ( 150 \times 22 ) cm.
Calcul de la circonférence du cercle :
[ C = 150 \times 22 ]
Calcul de la circonférence en mètres :
[ C_{m} = \frac{150 \times 22}{100} ]
Maintenant, nous pouvons calculer le rayon du cercle en divisant la circonférence par ( 2\pi ).
Calcul du rayon en cm :
[ r = \frac{C}{2\pi} ]
Calcul du rayon en mètres :
[ r_{m} = \frac{C_{m}}{2\pi} ]
Enfin, pour obtenir la circonférence du parterre circulaire, nous multiplions le rayon par ( 2\pi ).
Calcul de la circonférence du parterre en cm :
[ C_{parterre} = 2\pi \times r ]
Calcul de la circonférence du parterre en mètres :
[ C_{parterre_{m}} = 2\pi \times r_{m} ]
D'après mes calculs :
- La circonférence du cercle formé par les narcisses est de 3300 cm ou 33 m.
- Le rayon du parterre circulaire est d'environ 525,48 cm ou 5,25 m.
- La circonférence du parterre circulaire est d'environ 3300 cm ou 33 m.
Ainsi, le jardinier devra semer du gazon dans un parterre circulaire d'une circonférence d'environ 33 mètres.
La formule pour calculer la circonférence d'un cercle est : ( C = 2\pi r ), où ( r ) est le rayon du cercle.
Le nombre total de narcisses plantés est de 150 et ils sont espacés de 22 cm. Cela signifie que la circonférence du cercle formé par les narcisses est de ( 150 \times 22 ) cm.
Calcul de la circonférence du cercle :
[ C = 150 \times 22 ]
Calcul de la circonférence en mètres :
[ C_{m} = \frac{150 \times 22}{100} ]
Maintenant, nous pouvons calculer le rayon du cercle en divisant la circonférence par ( 2\pi ).
Calcul du rayon en cm :
[ r = \frac{C}{2\pi} ]
Calcul du rayon en mètres :
[ r_{m} = \frac{C_{m}}{2\pi} ]
Enfin, pour obtenir la circonférence du parterre circulaire, nous multiplions le rayon par ( 2\pi ).
Calcul de la circonférence du parterre en cm :
[ C_{parterre} = 2\pi \times r ]
Calcul de la circonférence du parterre en mètres :
[ C_{parterre_{m}} = 2\pi \times r_{m} ]
D'après mes calculs :
- La circonférence du cercle formé par les narcisses est de 3300 cm ou 33 m.
- Le rayon du parterre circulaire est d'environ 525,48 cm ou 5,25 m.
- La circonférence du parterre circulaire est d'environ 3300 cm ou 33 m.
Ainsi, le jardinier devra semer du gazon dans un parterre circulaire d'une circonférence d'environ 33 mètres.
Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !