Répondre :
La demi-vie du thallium est de 3 jours. Cela signifie qu'à chaque période de 3 jours, l'activité radioactive de l'échantillon est réduite de moitié.
1. Valeurs de \( A_0 \), \( A_1 \), \( A_2 \) et \( A_3 \) :
- \( A_0 \) : C'est l'activité initiale de l'échantillon, qui est de 120 MBq.
- \( A_1 \) : Après une demi-vie, l'activité est réduite de moitié. Donc \( A_1 = \frac{1}{2} \times A_0 = \frac{1}{2} \times 120 \) MBq.
- \( A_2 \) : Après deux demi-vies, l'activité est réduite de moitié une deuxième fois. Donc \( A_2 = \frac{1}{2} \times A_1 = \frac{1}{2} \times \frac{1}{2} \times 120 \) MBq.
- \( A_3 \) : Après trois demi-vies, l'activité est réduite de moitié une troisième fois. Donc \( A_3 = \frac{1}{2} \times A_2 = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times 120 \) MBq.
Il suffit de calculer les valeurs :
- \( A_0 = 120 \) MBq
- \( A_1 = \frac{1}{2} \times 120 = 60 \) MBq
- \( A_2 = \frac{1}{2} \times 60 = 30 \) MBq
- \( A_3 = \frac{1}{2} \times 30 = 15 \) MBq
1. Valeurs de \( A_0 \), \( A_1 \), \( A_2 \) et \( A_3 \) :
- \( A_0 \) : C'est l'activité initiale de l'échantillon, qui est de 120 MBq.
- \( A_1 \) : Après une demi-vie, l'activité est réduite de moitié. Donc \( A_1 = \frac{1}{2} \times A_0 = \frac{1}{2} \times 120 \) MBq.
- \( A_2 \) : Après deux demi-vies, l'activité est réduite de moitié une deuxième fois. Donc \( A_2 = \frac{1}{2} \times A_1 = \frac{1}{2} \times \frac{1}{2} \times 120 \) MBq.
- \( A_3 \) : Après trois demi-vies, l'activité est réduite de moitié une troisième fois. Donc \( A_3 = \frac{1}{2} \times A_2 = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times 120 \) MBq.
Il suffit de calculer les valeurs :
- \( A_0 = 120 \) MBq
- \( A_1 = \frac{1}{2} \times 120 = 60 \) MBq
- \( A_2 = \frac{1}{2} \times 60 = 30 \) MBq
- \( A_3 = \frac{1}{2} \times 30 = 15 \) MBq
Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !