Répondre :
Soit le polynôme h(x) = ax² + b avec h(1) = 4 et h(2) = 25.
On a donc le système d'équation suivant :
- h(1) = a x 1² + b = 4 (L1)
- h(2) = a x 2² + b = 25 (L2)
Donc,
- a + b = 4
- 4a + b = 25
Donc d'après la ligne L1, a = 4 - b .
On remplace a par 4 - b dans L2 et on obtient l'équation suivante :
4(4 - b) + b = 25
⇒ 16 - 4b + b = 25
⇒ 16 - 3b = 25
⇒ -3b = 25 - 16 = 9
⇒ -b = 3
⇒ b = -3
Par ailleurs a = 4 - b
⇒ a = 4 - (-3)
⇒ a = 7
Donc a = 7 et b = -3.
Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !