👤

Bonjour,

Je ne trouve pas de solution pour cet exo
Soient les points A1,1) et B(4,2). On cherche les coordonnées du point S intersection de la droite AB avec l'axe des ordonnées. Il faut utiliser la colinéarité des vecteurs AS et AB pour répondre à la question.


Répondre :

Réponse:

Pour trouver les coordonnées du point S, l'intersection de la droite AB avec l'axe des ordonnées, nous pouvons utiliser la colinéarité des vecteurs AS et AB.

Tout d'abord, calculons le vecteur AB :

AB = (4-1, 2-1) = (3, 1)

Ensuite, si les vecteurs AS et AB sont colinéaires, cela signifie qu'ils sont parallèles et ont la même direction. Donc, le coefficient directeur de la droite AB est égal au coefficient directeur de la droite passant par les points S et A.

Le coefficient directeur de la droite AB est donné par la formule :

m = (yB - yA) / (xB - xA)

m = (2-1) / (4-1) = 1/3

Maintenant, nous pouvons écrire l'équation de la droite passant par le point A et ayant un coefficient directeur de 1/3 :

y - yA = m(x - xA)

y - 1 = (1/3)(x - 1)

Pour trouver les coordonnées du point S, nous devons substituer x par 0 dans cette équation, car le point S est sur l'axe des ordonnées (x = 0) :

y - 1 = (1/3)(0 - 1)

y - 1 = -(1/3)

Maintenant, isolons y :

y = -(1/3) + 1

y = 2/3

Donc, les coordonnées du point S sont S(0, 2/3).