👤

Bonjour j'ai un demain à rendre eau plus vite et je n'ai pas compris comment résoudre cet exercice pourriez vous m'aider ?

The Evil Queen goes to Snow White's cottage with a basket of sixteen apples, six of which are poisoned. 80 Snow White chooses three apples at random from the basket and saves them for the next few days. Find the probability that, after a long, long time, Snow White awakens to the kiss of Prince Charming.​


Répondre :

Certainly! Let's break down the problem:

1. The Evil Queen has a basket of 16 apples, and 6 of them are poisoned.
2. Snow White chooses 3 apples at random from the basket.

To find the probability that Snow White awakens after a long time, we need to determine the probability that all three apples she chose are not poisoned.

Let's calculate this probability step by step:

1. Probability of choosing a non-poisoned apple on the first pick: \( \frac{10}{16} \) (since there are 10 non-poisoned apples left out of 16).
2. Probability of choosing a non-poisoned apple on the second pick: \( \frac{9}{15} \) (as there are now 9 non-poisoned apples left out of 15).
3. Probability of choosing a non-poisoned apple on the third pick: \( \frac{8}{14} \) (8 non-poisoned apples left out of 14).

Now, multiply these probabilities together to find the overall probability:

\[ \frac{10}{16} \times \frac{9}{15} \times \frac{8}{14} \]

You can simplify this expression to get the final probability. This represents the chance that Snow White picks three non-poisoned apples in a row.
Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !


En Studier: D'autres questions