Répondre :
Bonjour
A = (5x + 3)(2x - 1) - (5x + 3)(4x + 3)
x = -2 et x = 2/3
A = (5 * (-2) + 3)(2 * (-2) - 1) - (5 * (-2) + 3)(4 * (-2) + 3)
A = (-10 + 3)(-4 - 1) - (-10 + 3)(-8 + 3)
A = -7 * (-5) - (-7) * (-5)
A = 35 - 35
A = 0
A = (5 * 2/3 + 3)(2 * 2/3 - 1) - (5 * 2/3 + 3)(4 * 2/3 + 3)
A = (10/3 + 9/3)(4/3 - 3/3) - (10/3 + 9/3)(8/3 + 9/3)
A = 19/3 * 1/3 - 19/3 * 17/3
A = 19/9 - 323/9
A = -304/9
Developper
A = (5x + 3)(2x - 1) - (5x + 3)(4x + 3)
A = 10x^2 - 5x + 6x - 3 - (20x^2 + 15x + 12x + 9)
A = 10x^2 + x - 3 - 20x^2 - 27x - 9
A = -10x^2 - 26x - 12
Factoriser
A = (5x + 3)(2x - 1) - (5x + 3)(4x + 3)
A = (5x + 3)(2x - 1 - 4x - 3)
A = (5x + 3)(-2x - 4)
A = (5x + 3) * (-2)(x + 2)
A = (-2)(5x + 3)(x + 2)
B = (2x - 1)(4x - 3) + (2x - 1)^2
x = -2 et x = 2/3
B = (2 * (-2) - 1)(4 * (-2) - 3) + (2 * (-2) - 1)^2
B = (-4 - 1)(-8 - 3) + (-4 - 1)^2
B = -5 * (-11) + (-5)^2
B = 55 + 25
B = 80
B = (2 * 2/3 - 1)(4 * 2/3 - 3) + (2 * 2/3 - 1)^2
B = (4/3 - 3/3)(8/3 - 9/3) + (4/3 - 3/3)^2
B = 1/3 * (-1/3) + (1/3)^2
B = -1/9 + 1/9
B = 0
Developper
B = (2x - 1)(4x - 3) + (2x - 1)^2
B = 8x^2 - 6x - 4x + 3 + 4x^2 - 4x + 1
B = 12x^2 - 14x + 4
Factoriser
B = (2x - 1)(4x - 3) + (2x - 1)^2
B = (2x - 1)(4x - 3 + 2x - 1)
B = (2x - 1)(6x - 4)
B = (2x - 1) * 2(3x - 2)
B = 2(2x - 1)(3x - 2)
C = (5x - 3)^2 - (3x + 1)^2
x = -2 et x = 2/3
C = (5 * (-2) - 3)^2 - (3 * (-2) + 1)^2
C = (-10 - 3)^2 - (-6 + 1)^2
C = (-13)^2 - (-5)^2
C = 169 - 25
C = 144
C = (5 * 2/3 - 3)^2 - (3 * 2/3 + 1)^2
C = (10/3 - 9/3)^2 - (2 + 1)^2
C = (1/3)^2 - 3^2
C = 1/9 - 9
C = 1/9 - 81/9
C = -80/9
Developper
C = (5x - 3)^2 - (3x + 1)^2
C = 25x^2 - 30x + 9 - (9x^2 + 6x + 1)
C = 25x^2 - 30x + 9 - 9x^2 - 6x - 1
C = 16x^2 - 36x + 8
Factoriser
C = (5x - 3)^2 - (3x + 1)^2
C = (5x - 3 - 3x - 1)(5x - 3 + 3x + 1)
C = (2x - 4)(8x - 2)
C = 2(x - 2) * 2(4x - 1)
C = 4(x - 2)(4x - 1)
Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !