👤

L'épreuve consiste à lancer 2 pièces de monnaie et que le joueur reçoit 200f si les pièces tombent côte pile,100f si 1 pièce tombe côté pile,150f si les 2 pièces tombent côté face
1- déterminer la loi de probabilité associé à la variable X
2-determiner E(x),V(x) et l'ecart-type


Répondre :

Réponse :

Explications étape par étape :

Bonjour,

Voici la réponse en pièce-jointe !

En espérant t'avoir aidé, n'hésite pas à poser des questions si besoin.

Voir l'image OLIVIERRONAT

Réponse :

X peut prendre les valeurs: 100, 150 ou 200

Explications étape par étape :

1) soit X = le gain associé au nb de piles

X peut prendre les valeurs: 100, 150 ou 200

P(X= 100) = proba d'avoir un seul pile =  proba d'avoir la 1ère pile & la 2ème face OU  la 1ère face & la 2ème pile = 1/2*1/2 +  1/2*1/2 = 2/4 = 1/2

P(X= 150) = proba d'avoir 0 pile =  proba d'avoir 2 faces = 1/2*1/2 = 1/4

P(X= 200) = proba d'avoir 2 piles  = 1/2*1/2 = 1/4

2) E(X) = 100*P(X= 100) + 150*P(X= 150) + 200*P(X= 200)

= 100/2 + 150/4 + 200/4 = 137.5

V(X) = E((X-E(X))²)

= (100-137.5)²*P(X= 100) + (150-137.5)²*P(X= 150) + (200--137.5)²P(X= 200) = (100-137.5)²/2 + (150-137.5)²*/4 + (200--137.5)²/4 = 1718.75

σ = √V(X) = √1718.75 = 41.46