👤

1) Sur un segment [AB] de longueur 10cm, on place un point M.
On construit deux carrés AMCD et MBEF.

a) On pose x = AM.
Exprimer l'aire des carrés AMCD et MBEF en fonction de x.

b) Prouver que la somme des aires des deux carrés s'exprime par la fonction f définie par f(x)=2x2−20x+100.

c) Exprimer f sous sa forme canonique.

d) En déduire la position du point M pour que la somme des aires des deux carrés soit minimum.

e) L’aire totale peut elle être de 200cm2 ? De 68 cm2 ? De 30 cm2 ?
Justifier, et si la réponse est oui, déterminer alors la (ou les ) valeur(s) de x possible.

2) Obtient-on un résultat analogue en calculant le minimum de la somme des aires de deux disques de diamètres respectifs [AM] et [MB] ?
Faire une figure et résoudre cette nouvelle situation.

3) On considère maintenant un carré de côté [AM] et un disque de diamètre [MB]. Démontrer que la somme des aires du carré et du disque est minimum lorsque le rayon du disque est égal à 20 / π+4


1 Sur Un Segment AB De Longueur 10cm On Place Un Point M On Construit Deux Carrés AMCD Et MBEF A On Pose X AM Exprimer Laire Des Carrés AMCD Et MBEF En Fonction class=