Répondre :
Bonjour,
Pour a et b réels quelconques
[tex]0\leq (a-b)^2\\\\\Leftrightarrow 0\leq a^2+b^2-2ab\\\\\Leftrightarrow 2ab\leq a^2+b^2\\\\\Leftrightarrow ab\leq \dfrac{a^2+b^2}{2}\\\\[/tex]
De ce fait, pour a, b et c réels
[tex]ab+ac+bc \leq \dfrac{a^2+b^2}{2}+\dfrac{a^2+c^2}{2}+\dfrac{b^2+c^2}{2}\\\\\Leftrightarrow ab+ac+bc \leq \dfrac{2a^2+2b^2+2c^2}{2}\\\\\Leftrightarrow ab+ac+bc \leq a^2+b^2+c^2[/tex]
Merci
Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !