👤

Bonjour j'aurai besoin d'aide pour factoriser cette expression :
[tex](2x - 1) - (2x - 3)( {4}x^{2} - 1)[/tex]
merci d'avance​


Répondre :

Bonjour,

Factoriser:

A = (2x - 1) - (2x - 3)(4x² - 1)

A = 1(2x - 1) - (2x - 3)(4x² - 1)

A = 1(2x - 1) - (2x - 3)*[(2x)² - 1²]

>> identité remarquable :

  • a² - b² = (a - b)(a + b)

A = 1(2x - 1) - (2x - 3)(2x - 1)(2x + 1)

A = 1(2x - 1) - (2x - 3)(2x - 1)(2x + 1)

A = 1(2x - 1) - (2x - 1)(2x - 3)(2x + 1)

>> factorisation :

  • ka - kb = k(a - b)

A = (2x - 1)*[1 - (2x - 3)(2x + 1)]

A = (2x - 1)*[1 - (4x² + 2x - 6x - 3)]

A = (2x - 1)*[1 - (4x² - 4x - 3)]

A = (2x - 1)(1 - 4x² + 4x + 3)

A = (2x - 1)(-4x² + 4x + 4)

A = (2x - 1)*4(-x² + x + 1)

A = 4(2x - 1)(-x² + x + 1)

* = multiplication

Bonne journée