👤

Bonjour, j’aurais besoin d’aide sur cet exo svp
3. a) Déterminer (s'ils existent) tous les nombres que l'on peut choisir au départ pour obtenir un résultat
égal à 0.
b) Déterminer (s'ils existent) tous les nombres que l'on peut choisir au départ pour obtenir un
résultat égal à 39.
c) Déterminer (s'ils existent) tous les nombres que l'on peut choisir au départ pour obtenir un
résultat égal à - 30.


Bonjour Jaurais Besoin Daide Sur Cet Exo Svp 3 A Déterminer Sils Existent Tous Les Nombres Que Lon Peut Choisir Au Départ Pour Obtenir Un Résultat Égal À 0 B Dé class=

Répondre :

Bonsoir,

Programme de calcul:

choisir un nombre: soit x ce nombre

Le multiplier par 3: 3x

Elever le résultat au carré : (3x)² = 9x²

Retrancher 25 de ce carré: 9n² - 25

Notons R le résultat.

R = 9x² - 25

a) R = 0 ⇔ (3x)² = 25 = 5²

⇔ 3x = 5 ou 3x = -5

⇔ x = 5/3 ou x = -5/3

b) R = 39 ⇔ 9x² - 25 = 39

⇔ 9x² = 64

⇔  (3x)² = 8²

⇔ 3x = 8 ou 3x = -8

⇔ x = 8/3 ou x = -8/3

c) R = -30 ⇔ 9x² - 25 = -30

⇔ 9x² = -5

or 9x² ≥ 0 alors que -5<0

Il n'existe aucun nombre réel tel que 9x² - 25 = -30

Réponse :

Explications étape par étape :

Soit n le nombre choisi au départ et A l ‘expression littérale de ce programme.

A = (n x 3)^2 - 25 = 3n^2 - 5^2 = (3n + 5)(3n - 5)

3b) A= 3n^2 - 25 = 39 donc 3n^2 = 39 + 25  = 64 = (+/- 8)^2

donc 3n = 8 d’où n = 8/3 ou 3n = -8 d’où n = -8/3

>>>> A = 39 si n = 8/3 ou -8/3

3a) A= 3n^2 - 25 = O donc 3n^2 = 25 =  (+/- 5)^2

donc 3n = 5 d’où n = 5/3 ou 3n = -5 d’où n = -5/3

>>>> A = 0 si n = 5/3 ou -5/3

3c) A= 3n^2 - 25 = -30 donc 3n^2 = - 5

Le carré d’un nombre réel est peut être négatif

donc pour A = -30, n réel n’existe pas.

Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !


En Studier: D'autres questions