👤

Bonjour je suis en 1ère et merci pour votre aide (c’est pour lundi merci d’avance)

Bonjour Je Suis En 1ère Et Merci Pour Votre Aide Cest Pour Lundi Merci Davance class=

Répondre :

Réponse :

Bonjour,

Explications étape par étape :

1)

[tex]R_k=(\dfrac{k}{n} -\dfrac{k-1}{n} )*f(\dfrac{k}{n} )=\dfrac{k^2}{n^3} \\[/tex]

2)

[tex]\displaystyle \sum_{k=1}^nR_k=\dfrac{1}{n^3} *\sum_{k=1}^n k^2=\dfrac{1}{n^3}*\frac{n(n+1)(2n+1)}{6} \\[/tex]

3)

[tex]\displaystyle \lim_{n \to \infty} \dfrac{1}{n^3}*\frac{n(n+1)(2n+1)}{6}=\dfrac{2}{6}=\dfrac{1}{3} \\[/tex]

4)

[tex]\int\limits^1_0 {x^2} \, dx =[\dfrac{x^3}{3} ]_0^1=\dfrac{1}{3}[/tex]

C'est l'aire sous la parabole limitée par les droites x=0 et x=1

Rem les démonstrations de l'indication ont déjà été proposées dans un post précédent.

Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !


En Studier: D'autres questions