👤

Bonjour ! Besoin d'aide en urgence ( avant le 07/03/2024 svp) pour cet exercice de math ! Avec détails svp merci !


Une station de ski propose à ses clients trois formules pour la saison d'hiver.

• Formule A: on paie 36,50 € par journée de ski.

• Formule B: on paie 90 € pour un abonnement « SkiPlus » pour la saison, puis 18,50 € par journée de ski.

• Formule C: on paie 448,50 € pour un abonnement « SkiTotal » qui permet ensuite un accès gratuit à la station pendant toute la saison.

▷ 1. Marin se demande quelle formule choisir cet hiver. Il réalise un tableau pour calculer le montant à payer pour chacune des formules en fonction du nombre de journées de ski. Compléter, sans justifier, le tableau fourni.




▷ 2. Dans cette question, x désigne le nombre de journées de ski. On considère les trois fonctions f, g et h définies par :
f(x)=90+18,5x
g(x)=448,5
b(x) = 36,5x.

a) Laquelle de ces trois fonctions représente une situation de proportionnalité ?

b) Associer, sans justifier, chacune de ces fonctions à la formule A, B ou C correspondante.

c) Calculer le nombre de journées de ski pour lequel le montant à payer avec les formules A et B est identique.



▷ 3. On a représenté graphiquement les trois fonctions dans le graphique ci-après.
Sans justifier et à l'aide du graphique :

a) Associer chaque représentation graphique (d¹), (d²) et (d³) à la fonction f, g ou h correspondante.

b) Déterminer le nombre maximum de journées pendant lesquelles Marin peut skier avec un budget de 320 €, en choisissant la formule la plus avantageuse.

c) Déterminer à partir de combien de journées de ski il devient avantageux de choisir la formule C. ​


Bonjour Besoin Daide En Urgence Avant Le 07032024 Svp Pour Cet Exercice De Math Avec Détails Svp Merci Une Station De Ski Propose À Ses Clients Trois Formules P class=