👤

Dans le plan muni d'un repère orthonormé, on considère la parabole P d'équation y=x^2 et le point A(1;0)

on souhaite déterminer les coordonnées du point M de la courbe P telles que la distance AM soit minimale.
pour tout réel x, on pose f(x)=AM, où M est le point d'abscisse x de P.
1.Justifier que f(x)= x^4+x^2-2x+1.
2.En utilisant un outil au choix (calculatrice, algorithme, tableur...), conjecturer les coordonnées du point M répondant au problème.


Répondre :

Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !


En Studier: D'autres questions