👤

Exercice 6: Pour tous nombres réels strictement positif a et b, on note: A(a; b) = a +b et G(a; b) = √ab 2 + 1) Calculer et comparer A(9; 4) et G(9; 4); puis A(2; 32) et G(2; 32) 2) Conjecturer une inégalité entre A(a;b) et G(a;b) 3) Pour tous réels a et b strictement positifs, développer (√a - √b² 4) En déduire que pour tous réels a et b strictement positifs, A(a;b) ≥ G(a; b)​

Exercice 6 Pour Tous Nombres Réels Strictement Positif A Et B On Note Aa B A B Et Ga B Ab 2 1 Calculer Et Comparer A9 4 Et G9 4 Puis A2 32 Et G2 32 2 Conjecture class=

Répondre :

Merci d'avoir visité notre site Web dédié à BREVET. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !


En Studier: D'autres questions