👤

On considère un triangle ABC quelconque. On veut démontrer que les trois médiatrices dans le triangle ABC sont concourantes et que leur point d'intersection est le centre du cercle circonscrit au triangle. On appelle m, la médiatrice du segment [AB], m, la médiatrice du segment [AC] et m, la médiatrice du segment [BC]. On pourra faire une figure pour se faire une idée. 1. Démontrer que m, et m, ne sont pas parallèles.
2. On appelle O le point d'intersection de m, et m₂. a. Puisque O appartient à m,, quelle relation. existe-t-il entre les longueurs OA et OB ? b. De même, comparer les longueurs OA et OC.
3.
a. Que peut-on en déduire sur les longueurs OB et OC ?
b. Le point O appartient-il alors à m₂ ?
4. Quelle interprétation géométrique peut-on donner à la comparaison des trois longueurs OA, OB et OC ?
5. Conclure en résumant les propriétés démontrées.​


Répondre :

Merci d'avoir visité notre site Web dédié à Mathématiques. Nous espérons que les informations partagées vous ont été utiles. N'hésitez pas à nous contacter si vous avez des questions ou besoin d'assistance. À bientôt, et pensez à ajouter ce site à vos favoris !


En Studier: D'autres questions